- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Schrader, Gus (4)
-
Shapiro, Alexander (4)
-
Di_Francesco, Philippe (1)
-
Kedem, Rinat (1)
-
Khoroshkin, Sergey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We give a description of the Hallnäs–Ruijsenaars eigenfunctions of the 2-particle hyperbolic Ruijsenaars system as matrix coefficients for the order 4 element$$S\in SL(2,{\mathbb {Z}})$$ acting on the Hilbert space ofGL(2) quantum Teichmüller theory on the punctured torus. TheGL(2) Macdonald polynomials are then obtained as special values of the analytic continuation of these matrix coefficients. The main tool used in the proof is the cluster structure on the moduli space of framedGL(2)-local systems on the punctured torus, and an$$SL(2,{\mathbb {Z}})$$ -equivariant embedding of theGL(2) spherical DAHA into the quantized coordinate ring of the corresponding cluster Poisson variety.more » « less
-
Schrader, Gus; Shapiro, Alexander (, Inventiones mathematicae)null (Ed.)
-
Schrader, Gus; Shapiro, Alexander (, Journal of Algebra)null (Ed.)
-
Schrader, Gus; Shapiro, Alexander (, Advances in Mathematics)null (Ed.)
An official website of the United States government
